Life-threatening electrolyte abnormalities

Electrolyte abnormalities are common in hospitalized patients. Prompt recognition and treatment of imbalances in the calcium, potassium, magnesium, or sodium levels may reduce complications and the risk of morbidity and mortality.

CONTRIBUTORS

WAYNE MILLER, MD, Department of Medicine, Jefferson Medical College, Philadelphia, Pa.

MARK G. GRAHAM, MD, Associate Professor of Medicine and Associate Director, Division of Internal Medicine and Primary Care, Jefferson Medical College, Philadelphia, Pa.

Uncorrected electrolyte abnormalities may have life-threatening sequelae that encompass multiple organ systems, including the cardiovascular, GI, and central nervous systems. Severe electrolyte abnormalities can result in paralysis, seizures, coma, intractable nausea and vomiting, cardiac and respiratory arrest, and even death. We review the clinical presentation and treatment of the most commonly encountered electrolyte abnormalities in hospitalized patients.

CALCIUM

Changes in serum calcium are directly related to serum albumin concentrations. For every increase in albumin of 1.0 mg/dL, there is a 0.8-mg/dL increase in calcium concentration. Corrected calcium is calculated as follows:

$$\text{Corrected } \text{Ca} = (4.0 \text{ g/dL} - \text{plasma albumin}) \times 0.8 + \text{serum Ca}$$

The concentration of ionized calcium is inversely proportional to the albumin concentration. The higher the serum albumin, the lower the plasma ionized calcium concentration will be. The lower the serum albumin, the higher the plasma ionized calcium concentration will be. Measured total serum calcium concentration is dependent on changes in serum albumin. Therefore, ionized calcium levels may be normal when total calcium levels are low. One setting in which ionized calcium should be followed instead of total serum calcium is in the ICU, where there is a high false-positive and a high false-negative rate for hypercalcemia and hypocalcemia, respectively, when calculating for changes in serum albumin.1

Hypocalcemia

Normal plasma calcium concentrations range from 8.5 to 10.5 mg/dL (4.2-5.2 mg/dL for ionized calcium). Hypocalcemia is defined as a calcium level of less than 8.5 mg/dL or an ionized calcium level of less than 4.2 mg/dL. Symptoms may occur when ionized calcium drops below 2.5 mg/dL.2

The most common sequel of hypocalcemia is tetany. Symptoms may range from mild, such as circumoral numbness and paresthe-
Electrolytes

Stasis, to severe, including muscle contractions and carpopedal spasm. Latent tetany may result in the classic Trousseau’s and Chvostek’s signs. Hypocalcemia may also have neurologic sequelae, such as grand mal, petit mal, or focal seizures, which may occur independently of tetany. Hallucinations or psychosis may also develop. Cardiovascular manifestations of acute hypocalcemia include congestive heart failure (CHF) due to decreased myocardial contractility, bradycardia, and a prolonged QT syndrome that may progress to torsades de pointes.3,4

Hypocalcemia may stem from hyperphosphatemia as a result of rhabdomyolysis or renal failure, pancreatitis and the formation of calcium soaps, hypovitaminosis D from liver or kidney disease, cancers with a high proclivity for bone metastasis (such as prostate and breast cancer), tumor lysis syndrome, or postthyroidectomy.2,5,8 Magnesium depletion may also lower calcium levels. There is an increased parathyroid hormone (PTH) resistance when serum magnesium concentrations fall below 0.8 mEq/L (1.0 mg/dL). More severe forms of hypomagnesemia result in decreased PTH secretion.

Express Stop

Serum calcium levels above 15 mg/dL may result in complete heart block or even cardiac arrest.

Treatment of hypocalcemia

Patients with symptomatic hypocalcemia should have ionized calcium measured to rule out hyperalumminemia as the cause. In addition, serum phosphate, PTH, magnesium, potassium, and creatinine levels should be ordered. Acute symptomatic hypocalcemia should be treated with 9 mEq, or 2 g, of calcium gluconate in 100 mL of 0.9% sodium chloride (NaCl) or dextrose 5% in water (D5W) infused over 15 minutes. If symptoms persist, this should be followed by 27 mEq, or 6 g, of calcium gluconate in 1 L of 0.9% NaCl or D5W infused over 6 to 12 hours. Calcium gluconate is preferred to calcium chloride because it is less likely to cause tissue necrosis if a peripheral IV line extravasates. Serum calcium should be monitored every 4 to 6 hours. After the serum calcium is corrected, an evaluation for the cause should be initiated.

Hypercalcemia

Hypercalcemia is measured as a serum calcium concentration of greater than 10.5 mg/dL (5.2 mg/dL for ionized calcium) and may result from increased bone resorption, decreased renal loss, or increased GI absorption (see “Stages of hypercalcemia,” page 21).

Hyperparathyroidism accounts for 90% of elevated serum calcium levels in ambulatory patients, whereas cancer is the most common cause in hospitalized patients, accounting for 65% of cases. Hypercalcemia in cancer patients carries a poor prognosis: The 30-day mortality risk is nearly 50%.7

Elevated serum PTH may result from a parathyroid gland adenoma (primary hyperparathyroidism) or neuroendocrine tumors, such as squamous cell carcinoma of the lung (secondary hyperparathyroidism). Hypercalcemia associated with cancer may be secondary to bony metastasis with increased production of inflammatory cytokines and PTH-related protein, neuroendocrine tumors, or lymphomas that secrete 1,25-dihydroxyvitamin D (1,25(OH)2D).7,8

Medications, including lithium, thiazide diuretics, and large doses of beta carotene, may also be responsible for increased serum calcium concentrations. Calcium carbonate overuse can lead to hypercalcemia, alkalosis, and renal insufficiency in the milk-alkali syndrome. Medications should always be considered in the evaluation of high serum calcium levels.9

Patients with levels of serum calcium from 10.5 to 12 mg/dL are typically asymptomatic. Above 12 mg/dL, multiple manifestations may occur, involving organ systems included in the mnemonic “stones, bones, psychic moans, and abdominal groans.” Renal involvement may present with nephrolithiasis, nephrogenic diabetes insipidus, and dehydration. Musculoskeletal symptoms such as bone pain, arthritic, and osteoporosis may be present. Hypercalcemia may also cause nausea, vomiting, abdominal pain, constipation, peptic ulcers, and pancreatitis. Serious side effects affect the CNS: Confusion, lethargy, and fatigue in mild hypercalcemia, if untreated, may progress to stupor and coma.

Cardiovascular findings depend on the severity of
hypercalcemia. Initially, elevated serum calcium levels increase myocyte contractility. Once the level reaches 15 mg/dL, myocardial depression may occur. The QT interval shortens when serum calcium levels are higher than 13 mg/dL with subsequent prolongation of the PR and QRS intervals and an increased risk for cardiac arrhythmias. Serum calcium levels above 15 mg/dL, a level indicative of hypercalcemic crisis, may result in complete heart block or even cardiac arrest.

Treatment of hypercalcemia

Patients with mild hypercalcemia generally do not derive benefit from treatment. However, it is essential that those with calcium levels above 14 mg/dL, or those who are symptomatic with calcium levels above 12 mg/dL, receive immediate intervention.

For patients with mild hypercalcemia who have adequate renal and cardiovascular function, it is recommended that they receive IV fluids to generate a urine output of 200 mL/h. Severe hypercalcemia requires an infusion rate of 300 to 500 mL/h until urine output equals fluid intake. When fluid input and output are balanced, the rate can be lowered to 100 to 200 mL/h. After intravascular volume has been restored, if serum calcium levels are still elevated, a loop diuretic can be considered. During this time, magnesium and potassium levels should be monitored, and concentrations replenished as necessary. If a patient suffers from resistant, life-threatening hypercalcemia, hemodialysis is the treatment of choice.

POTASSIUM

Abnormal serum potassium levels are the most common electrolyte abnormality in hospitalized patients, with nearly 20% having a level below 3.6 mEq/L. Serum potassium concentration is controlled by 3 mechanisms: intake, distribution between intracellular and extracellular fluid, and renal excretion.

Cellular distribution is affected by insulin and beta-adrenergic receptors that stimulate activation of Na+/K+-ATPase channels and cause an influx of potassium into the cell. Renal excretion occurs mainly at the cortical collecting tubule in response to increased serum potassium levels and the plasma aldosterone concentration.

Rapid or severe changes in serum potassium levels may have life-threatening consequences. Adjustments may affect not only membrane potential but also serum pH. Changes in serum potassium result in an inverse change in serum pH. Also, changes in serum pH will affect serum potassium levels: A rise in pH will cause hydrogen to exit cells in an attempt to buffer the rising pH, which will cause a fall in serum potassium levels. Falling pH has the converse effect. In patients who suffer from illnesses that cause changes in pH, such as diabetic ketoacidosis, uremia, and lactic acidosis, serum potassium levels should be monitored.

Hypokalemia

Only 0.4% of the total concentration of extracellular potassium is measurable in plasma. Hypokalemia is defined as a serum potassium level of less than 3.5 mEq/L. Pathophysiologic causes of low serum potas-
sodium include renal loss from diseases such as hyperaldosteronism; GI potassium loss that may be due to diarrhea; malnutrition; and intracellular shifts secondary to alkalosis. However, prescribed drugs are perhaps the most common cause of hypokalemia.

Drug-induced potassium loss may result from 3 separate mechanisms. Beta-agonists, tocolytic agents, and methylxanthines may induce an intracellular shift of potassium. Diuretics, glucocorticoids, and certain antibiotics, including penicillin and carbenicillin (Geocillin), cause increased renal excretion of potassium. Finally, phenolphthalein and sodium polystyrene sultonate (Kayexalate, Kionex, Marlexate) can increase GI loss of potassium. Therefore, it is important to review a patient’s drug record when treating hypokalemia.

Symptoms of hyperkalemia include ascending muscle weakness that may progress to paralysis and respiratory failure.

sium include renal loss from diseases such as hyperaldosteronism; GI potassium loss that may be due to diarrhea; malnutrition; and intracellular shifts secondary to alkalosis. However, prescribed drugs are perhaps the most common cause of hypokalemia.

Drug-induced potassium loss may result from 3 separate mechanisms. Beta-agonists, tocolytic agents, and methylxanthines may induce an intracellular shift of potassium. Diuretics, glucocorticoids, and certain antibiotics, including penicillin and carbenicillin (Geocillin), cause increased renal excretion of potassium. Finally, phenolphthalein and sodium polystyrene sultonate (Kayexalate, Kionex, Marlexate) can increase GI loss of potassium. Therefore, it is important to review a patient’s drug record when treating hypokalemia.

Symptoms of hyperkalemia include ascending muscle weakness that may progress to paralysis and respiratory failure.

Typically, patients with mild hypokalemia (serum potassium 3.0-3.5 mEq/L) are asymptomatic. Serum potassium levels from 2.5 to 3.0 mEq/L may cause constipation and weakness. Levels less than 2.5 mEq/L may result in muscle necrosis, and levels less than 2.0 mEq/L may cause an ascending muscle paralysis and subsequent respiratory failure. In patients with a history of cardiac disease, even mild to moderate changes in serum potassium can cause cardiac arrhythmias. Hypokalemia can result in prolonged QT syndrome with subsequent development of torsades de pointes. In patients receiving digoxin (Lanoxin) therapy, low serum potassium levels can increase its arrhythmogenic effects.

Treatment of hypokalemia

The cornerstone of treatment is potassium replacement. However, potassium supplementation is also the most common cause of severe hypokalemia, especially with the use of IV potassium.

Oral potassium is the preferred method of repletion, if possible. Patients with serum potassium levels of 3.0 to 3.5 mEq/L should receive 80 mEq in either 4 doses of 20 mEq IV or two doses of 40 mEq po. Serum potassium should be checked 2 hours after the last dose. Potassium levels of 2.5 to 2.9 mEq/L require 120 mEq, given as 6 doses of 20 mEq IV or 3 doses of 40 mEq po. Serum potassium levels should be rechecked 2 hours after the fourth IV dose or the second oral dose. For serum potassium levels from 2.0 to 2.4 mEq/L, 160 mEq of potassium repletion is required. This can be administered as 8 doses of 20 mEq IV or 4 doses of 40 mEq po. Serum potassium should be checked 2 hours after 120 mEq have been administered.

In emergent conditions, patients may be given 10 to 20 mEq/h of potassium. This requires continuous ECG monitoring. If cardiac arrest is believed to be imminent, higher concentrations of potassium may be given at 10 mEq IV over 5 minutes. This may be repeated once if needed. If this step is taken, it must be documented that the injection was intentional to treat life-threatening hypokalemia.

Hyperkalemia

Hyperkalemia may be defined as mild (potassium of 5.0-6.0 mEq/L), moderate (potassium 6.0-7.0 mEq/L), or severe (potassium greater than 7.0 mEq/L). Moderate and severe hyperkalemia require immediate treatment. Causes of hyperkalemia include metabolic acidosis, insulin deficiency, and hyperglycemia, increased tissue catabolism (such as rhabdomyolysis), renal tubular acidosis, tumor lysis syndrome secondary to chemotherapy, and beta-adrenergic blockade. Many other drugs can also cause hyperkalemia (see Table 1, page 23). Medication lists should be reviewed when treating patients for high serum potassium levels.

Keep laboratory error in mind when evaluating hyperkalemia. Drawing blood from a line through which potassium is being infused, technician error, hemolysis, leukocytosis, thrombocytosis, and traumatic venipuncture can all cause falsely elevated values of serum potassium.

Hyperkalemia manifests itself with very few symptoms and these tend to occur only at levels exceeding 7.0 mEq/L or when levels rise acutely. Symptoms include ascending muscle weakness that may progress to paralysis and respiratory failure. The ECG changes that occur with hyperkalemia start
with peaking of the T waves, which then progresses to flattened P waves, first-degree heart block, widening of the QRS complex, deep S waves, and merging of the S and T waves. If the condition is left untreated, a sine-wave pattern may develop with subsequent cardiac arrest.

Treatment of hyperkalemia

Initially, one should evaluate the patient for all exogenous sources of potassium and medications that can elevate serum potassium concentrations. Treatment is based on severity level (see Table 2, page 24).

MAGNESIUM

Physiologically, magnesium aids in cellular transport of calcium, potassium, and sodium and acts to stabilize excitable cellular membranes. Magnesium homeostasis is maintained in healthy individuals by absorption through the brush border in the small intestine via both facilitated transport and passive diffusion. It is also excreted from the small intestine, with a large amount being reabsorbed in the large intestine. Balance is maintained in the kidney, where approximately 100 mg of magnesium is excreted in the urine daily.

Hypomagnesemia

Defined as a serum magnesium concentration of less than 1.3 mEq/L, hypomagnesemia is relatively common, occurring in more than 10% of hospitalized patients. The 2 main mechanisms by which hypomagnesemia occurs are GI and renal losses.

GI loss may be the result of chronic diarrhea, small bowel bypass surgery, malabsorption, or pancreatitis. Necrotic fat within the pancreas is able to utilize magnesium, as it does calcium, in the saponification process. Renal losses may result from the use of loop or thiazide diuretics via loss of sodium-dependent magnesium reabsorption. They may also be secondary to nephron damage. Nephrotoxic drugs, such as cisplatin (Platiniol), pentamidine (Nebupent, Pentam), and cyclosporine (Neoral, Sandimmune, SangCya), are all associated with tubular necrosis and hypomagnesemia.

Symptomatic hypomagnesemia often occurs concomitantly with hypokalemia and hypocalcemia.

<table>
<thead>
<tr>
<th>TABLE 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agents that may cause hyperkalemia</td>
</tr>
<tr>
<td>ACE inhibitors and ARBs</td>
</tr>
<tr>
<td>Amiloride (Midamor) and triamterene (Dyrenium)</td>
</tr>
<tr>
<td>Amino acids</td>
</tr>
<tr>
<td>Azole antifungals</td>
</tr>
<tr>
<td>Beta-blockers</td>
</tr>
<tr>
<td>Cyclosporine (Neoral, Sandimmune, SangCya)</td>
</tr>
<tr>
<td>Digoxin (Lanoxin) (at toxic levels)</td>
</tr>
<tr>
<td>Eplerenone (Inspra)</td>
</tr>
<tr>
<td>Ethinyl estradiol/drospirenone (Yasmin)</td>
</tr>
<tr>
<td>Fluoride toxicity</td>
</tr>
<tr>
<td>Glucose infusions or insulin deficiency</td>
</tr>
<tr>
<td>Heparins</td>
</tr>
<tr>
<td>Herbal remedies with digitalis-like effect</td>
</tr>
<tr>
<td>NSAIDs</td>
</tr>
<tr>
<td>Nutritional and herbal supplements</td>
</tr>
<tr>
<td>Packed RBCs</td>
</tr>
<tr>
<td>Penicillin G potassium</td>
</tr>
<tr>
<td>Potassium supplements or salt substitutes</td>
</tr>
<tr>
<td>Spironolactone (Aldactone)</td>
</tr>
<tr>
<td>Succinylcholine (Anectine, Quelicin)</td>
</tr>
<tr>
<td>Tacrolimus (Prograf)</td>
</tr>
<tr>
<td>Trimethoprim (Primsol, Proloprim) and pentamidine (Nebupent, Pentam 300)</td>
</tr>
</tbody>
</table>

Key: ARB, angiotensin receptor blocker.

Hypokalemia is strongly linked to low serum magnesium levels because they are both associated with renal and GI loss. Severe hypomagnesemia (serum magnesium lower than 1.0 mg/dL) may be associated with hypocalcemia because of increased resistance to PTH on receptor cells via inhibition of G-protein-activated cAMP production, although this has not been proved. Because magnesium aids in the stabilization of excitable membranes, low serum magnesium levels may result in neurologic manifestations similar to those in patients with hypocalcemia. Tetany, respiratory and skeletal muscle weakness, convulsions, and Trouseau's and Chvostek's signs may all be present in patients with hypomagnesemia.

Magnesium deficiency has also been associated with increased severity of cardiovascular disease. The incidence of atherosclerosis, diabetes, hypertension, and platelet-dependent thrombosis is higher in
Electrolytes

TABLE 2

<table>
<thead>
<tr>
<th>Serum potassium level</th>
<th>Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.5-7.0 mEq/L (mild to moderate elevation)</td>
<td>Sodium polystyrene sulfonate (Kayexalate, Kionex, Marxenate) and loop diuretics. If the patient is asymptomatic without significant ECG findings, treatment is mainly focused on potassium excretion.</td>
</tr>
<tr>
<td>>7.0 mEq/L (severe elevation)</td>
<td>Insulin and glucose, calcium chloride, sodium bicarbonate, sodium polystyrene sulfonate, and loop diuretics. Regardless of symptoms or ECG findings, this degree of elevation requires rapid decrease of serum potassium levels, with stabilization of myocardial membranes.</td>
</tr>
</tbody>
</table>

patients with hypomagnesemia. ECG findings may include widening of the QRS complex and peaked T waves, which may progress to long QT syndrome with subsequent polymorphic ventricular tachycardia, or torsades de pointes. Symptoms may include chest pain, shortness of breath, and syncope. Unfortunately, many patients who progress to long QT syndrome have no prior symptoms and are found after sudden cardiac arrest.

Low serum magnesium concentrations may also be a poor prognostic indicator for patients in the ICU. One study revealed that patients who developed hypomagnesemia while in the ICU had a longer length of stay, a higher prevalence of severe sepsis and septic shock, and increased mortality.

Treatment of hypomagnesemia

Cellular repletion of magnesium is a slow process and requires 3 to 5 days to correct. For a serum magnesium concentration of 1.3 to 2.0 mEq/L, 2 g of magnesium sulfate should be given in 100 mL of 0.9% NaCl or D5W at a rate of 1 g/h. For severe hypomagnesemia (less than 0.8 mEq/L), 2 g of magnesium sulfate should be given IV over 10 minutes followed by a continuous infusion at 0.5 g/h IV for 72 hours or 1 to 2 g IV q4h for 72 hours. For torsades de pointes, patients should receive 2 g of magnesium sulfate over 1 to 2 minutes. Patients with seizures require 2 g of magnesium sulfate IV over 10 minutes. Given the association of hypomagnesemia with hypocalcemia, it is prudent to administer calcium in these patients.

Hypermagnesemia

Hypermagnesemia, defined as a serum magnesium level greater than 2.2 mEq/L, is mainly seen either in patients with impaired renal function or in those who have received a large magnesium load orally, rectally, or IV. Renal excretion is the only regulatory mechanism for plasma magnesium concentration. In hospitalized patients with renal failure, medications such as laxatives and antacids may cause hypermagnesemia even at therapeutic dosages and are thus contraindicated. Parenteral magnesium is utilized in women with preeclampsia to decrease neuromuscular activation, and serum magnesium concentrations of 5 to 7 mEq/L (6.0-8.4 g/dL) are tolerated. Elderly patients with GI disease who are on cathartics may develop hypermagnesemia and should be monitored.

In most cases, the elevation in serum magnesium concentrations is mild, and patients are usually asymptomatic. Patients generally become symptomatic when magnesium levels exceed 4 mEq/L (4.8 mg/dL). Magnesium levels with expected symptoms may be stratified as shown in Table 3 (see page 25).

Treatment of hypermagnesemia

First-line treatment for elevated magnesium levels is to give calcium, which is able to remove magnesium from serum, and to remove sources of magnesium intake. Infusion of a 10% calcium chloride solution (5-10 mL or 500-1000 mg) may be administered to correct for arrhythmias, more than once if necessary. For severe hypermagnesemia that is refractory to calcium chloride, dialysis is the treatment of choice. In the interim, the patient may receive IV saline and furosemide (Lasix) to eliminate some of the magnesium as long as there is normal cardiac and renal function.
SODIUM

Baroreceptors located in the left ventricle, aortic and carotid arches, and renal afferent arteriole all respond to changes in volume via a neurohormonal axis. Changes in volume or serum sodium concentration cause an increased release of norepinephrine and renin with subsequent increases in systemic vascular resistance, angiotensin II, and aldosterone in an attempt to restore BP and serum sodium concentration. In conditions such as CHF, the neurohormonal response is augmented in an attempt to maintain cardiac output that may result in severe drops in serum sodium concentration.

The range of normal serum osmolality, 275 to 290 mOsm/kg, is maintained by a constant balance between water intake and excretion with a sensing mechanism that is capable of recognizing changes in tonicity as low as 1% to 2%. Thirst is driven by elevated osmolality (hypermotremia). Elevation to approximately 295 mOsm/kg results in subsequent activation of osmoreceptors in the anterolateral hypothalamus, increasing thirst. Water loss may occur via the urinary or the GI tract, or via insensible losses secondary to respiratory secretions and evaporation.

GI and insensible losses may be severe in patients with gastroenteritis, diarrhea, or upper respiratory tract infections. Urinary excretion of water is stimulated by arginine vasopressin (AVP) in response to hypotonicity (hyponatremia) recognized by hypothalamic osmoreceptors that respond to an osmotic threshold of 280 to 290 mOsm/kg. AVP reacts with V2 receptors located in the collecting tubules of the renal nephron and causes the production of aquaporin channels with a resultant increase in dilute urine to correct for the hypotonic state. Currently, a new class of V2-receptor antagonists, known as vaptans, have shown promise in controlling serum sodium concentrations in patients with CHF.

Hyponatremia

Hyponatremia is defined as a serum sodium concentration of less than 135 mEq/L. There are multiple etiologies of hyponatremia, described as follows.

Hypertonic hyponatremia results when excess osmotically active particles increase the oncotic pressure within the intravascular space, drawing fluid from the extracellular space. Hyperglycemia is the most common cause of hypertonic hyponatremia. An increase of 100 mg/dL of serum glucose artificially lowers the serum sodium concentration by 1.7 mEq/L; a cause of this nature should always be considered in patients with unexplained drops in serum sodium. Increased levels of mannitol (Osmotrol) in patients with renal failure has the same effect.

Isotonic hyponatremia may result from excess lipid or protein within the serum, whereas hypotonic hyponatremia is the result of a decreased number of osmotically active particles within plasma.

Hypotonic hyponatremia may be further divided into 3 categories:

- Hypovolemic hypotonic hyponatremia may result from thiazide diuretics, osmotic diuresis, adrenal insufficiency, or ketonuria.
- Isovolemic hypotonic hyponatremia is commonly seen in patients with syndrome of inappropriate antidiuretic hormone, hypothyroidism, certain forms of cancer, and HIV infection and in patients with decreased solute intake such as those with beer potomania.
- Hypervolemic hypotonic hyponatremia may result from psychogenic polydipsia or multiple tap water enemas. It is also seen in patients with CHF in whom it has been associated with a poor prognosis.

TABLE 3

Plasma magnesium levels and expected symptoms

<table>
<thead>
<tr>
<th>Plasma magnesium level</th>
<th>Symptoms</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.6 mEq/L (4.8-7.2 mg/dL)</td>
<td>Nausea, flushing, diminished deep tendon reflexes, lethargy</td>
</tr>
<tr>
<td>6-10 mEq/L (7.2-12 mg/dL)</td>
<td>Somnolence, hypocalcemia, lost deep tendon reflexes, hypotension, ECG changes, bradycardia</td>
</tr>
<tr>
<td>>10 mEq/L (12 mg/dL)</td>
<td>Respiratory paralysis, muscle paralysis, complete heart block, cardiac arrest</td>
</tr>
</tbody>
</table>

Continued on page 26
Symptoms of hyponatremia manifest themselves when changes in serum sodium levels are rapid or large and include headache, nausea, vomiting, lethargy, disorientation, and depressed reflexes. Symptoms are usually observed at serum sodium concentrations of less than 125 mEq/L. Untreated patients may develop complications including seizures, coma, respiratory arrest, permanent brain damage, and death.

Treatment of hyponatremia

Treatment of **isotonic** and **hypertonic hyponatremia** usually requires correction of the underlying cause. For **hypotonic hyponatremia**, treatment depends on the particular form of hyponatremia and the nature of the symptoms.

Isotonic and **hypovolemic hypotonic hyponatremia** require fluid restriction. **Hypovolemic hypotonic hyponatremia** requires IV saline infusion to replace both fluid and sodium. For **asymptomatic hyponatremia**, treatment should be gradual. The serum sodium concentration should increase by no more than 0.5 mEq/L/h and no more than 10 to 12 mEq/L/d.² The following equation can be used to calculate the change in serum sodium concentration that 1 L of infusate will cause:¹⁹

\[
\text{Change in serum Na} = \frac{\text{Infusate Na} - \text{serum Na}}{\text{Total body H}_2\text{O} + 1}
\]

The infusion rate can then be adjusted to ensure the proper rate of change in the serum sodium concentration. Too-rapid correction of the serum sodium concentration may result in central pontine myelinolysis from fluid shifts within brain parenchyma.

In patients with more severe symptoms, such as seizures or lethargy, hypertonic saline should be used. Initially, the rate of change should be 1 mEq/L/h until symptoms subside. The rate may then be decreased to 0.5 mEq/L/h. In male patients, the amount of sodium required to correct for the deficit can be calculated using the following equation (for female patients, use 0.5 as a multiplier instead of 0.6):

\[
\text{Na deficit} = (\text{Desired Na} - \text{serum Na}) \times 0.6 \times \text{body wt in kg}
\]

Once the deficit is calculated, the amount of 3% saline solution required to correct it can be determined by dividing the deficit by 513 mEq/L (the concentration of sodium in 3% saline).

Hypernatremia

Defined as a serum sodium concentration greater than 145 mEq/L, hypernatremia is caused by either free water loss or infusion of hypertonic saline. It is rare in healthy, capable individuals who are able to respond to thirst. More susceptible are infants and the elderly who either have no access to water or who suffer from dementia and do not recognize the response.

Hypernatremia may be secondary to insensible losses, central or nephrogenic diabetes insipidus, GI loss, Cushing’s syndrome, or hyperaldosteronism. Exercise may induce a transient increase in serum sodium. The increased concentration of lactate within cells creates an osmotic gradient that draws fluid into cells, with a subsequent rise in serum sodium levels. Symptoms of hypernatremia mimic those of hyponatremia and depend on both the rate and the level of change in serum sodium concentration.

Treatment of hypernatremia

Treatment of hypernatremia consists of replacing the free water deficit while correcting the underlying...
cause. In male patients, the free water deficit can be calculated with the following equation, where total body water is expressed as a percentage of total body weight (for female patients, use 0.5 as a multiplier instead of 0.6):

\[
\text{Free H}_2\text{O deficit} = \frac{\text{Plasma Na}}{140} \times \text{body wt in kg} \times \frac{140}{0.6}
\]

In patients with mild, asymptomatic hyponatremia, replacement of free water may only require increased oral intake. In more severe, symptomatic hyponatremia, IV fluids are required. The calculated free water deficit can be replaced with IV D5W. Half the deficit should be replaced within the first 24 hours, with the remainder being administered over the subsequent 48 to 72 hours. While the deficit is being replaced, maintenance fluids for continuing loss should also be calculated and included in the hourly infusion rate. The 24-hour maintenance fluid requirement can be calculated by using the patient’s body weight (in kg) and the following correlations:

First 10 kg body wt = 100 mL/kg
Second 10 kg body wt = 40 mL/kg
Remainder of body wt = 10 mL/kg

So, for a 70-kg male with a serum sodium of 160 mEq/L, the 24-hour maintenance fluid requirement would be:

\[
100 \text{ mL/kg} \times 10 \text{ kg} = 1000 \text{ mL}
\]
\[
40 \text{ mL/kg} \times 10 \text{ kg} = 400 \text{ mL}
\]
\[
10 \text{ mL/kg} \times 50 \text{ kg} = 50 \text{ mL}
\]
\[
\text{Total} = 1450 \text{ mL/d}
\]

The free water deficit for this individual would be

\[
\frac{160 - 140}{140} \times 70 \times 0.6 = 6 \text{ L}
\]

In the first 24 hours, the hourly IV fluid rate would be

\[
\frac{1450 \text{ mL} + (0.5 \times 6000 \text{ mL})}{24 \text{ h}} = 185 \text{ mL/h}
\]

As with hyponatremia, the rate of change in the sodium concentration should be 0.5 to 1.0 mEq/L and should not decrease by greater than 10 to 12 mEq/d.

The response of neurons to hyponatremia is an increase in intracellular solute concentration to maintain adequate intracellular volume. This increase in solute concentration usually takes 72 hours. If the serum sodium concentration is corrected too quickly, the patient is at risk of cerebral edema, seizures, coma, or death.

This article was contributed by Drs Miller and Graham and edited by Peter D’Epiro, PhD.

Drs Miller and Graham disclose that they have no financial relationships with any manufacturer in this area of medicine.

REFERENCES
2. Life-threatening electrolyte abnormalities. Circulation. 2006;114(IV-121—IV-125).
Key information about providing emergency contraception

The adolescent pregnancy rate in the United States has been declining since 1991—in 2002, there were 43 births for every 1000 women aged 15 to 19.1 The increasing use of contraceptives by adolescents has been linked to this trend, but they still have a higher contraceptive failure rate than do older women.2,3 Timely use of emergency contraception (EC) could reduce pregnancy risk by as much as 89% to 95%, depending on the type of oral EC used.4

Explaining emergency contraception

Once called the morning-after pill or post-coital contraception, EC is a means of preventing pregnancy after unprotected or underprotected intercourse. The term “morning-after pill” has fallen out of favor because it conveys a limited time frame for use—the morning after intercourse. In fact, EC can be used immediately after and for as long as 120 hours (5 days) following intercourse.4

In the 1960s, high-dose oral estrogens were administered for 5 days as EC, but a high rate of nausea and vomiting limited their use. In 1974, a combination EC method called the Yuzpe regimen was developed that lowered the total estrogen dose and added a progestin.5 This new regimen had fewer side effects than the high-dose estrogen regimen and did not significantly decrease efficacy.6

The first prepackaged formulation of the Yuzpe regimen, called Preven, was approved by the FDA in 1998. In the 1990s, high doses of oral levonorgestrel (a progestin) were found to be effective for EC.7,8 Plan B, a levonorgestrel-only product, was approved by the FDA in 1999.

Three types of EC are available in the United States: progestin-only pills (POPs), combined oral contraceptive pills (COCs), and a copper-releasing intrauterine device (ParaGuard) (see Table 1, page 30). This article discusses oral agents available in the United States.

CONTRIBUTORS

LEE ANN E. CONARD, RPH, DO, MPH, Assistant Professor of Pediatrics at the University of Pittsburgh School of Medicine, Pittsburgh, Pa.

MELANIE A. GOLD, DO, Associate Professor of Pediatrics at the University of Pittsburgh School of Medicine, Pittsburgh, Pa.